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The heats of formation and Gibbs free energies of atomization of the following crystals are
discussed: BN, BeO, AlP, GaAs, ZnSe, InSb, CdTe, ZnO, AlAs, GaP, ZnS, InP, CdS, AlSb,

Gasb, ZnTe, InAs, CdSe, Cul, CuBr, and CuCl.

It is shown that these heats and energies can

be predicted using certain spectroscopic parameters which describe covalent and ionic parts

of tetrahedral bonds.

The role played by s-p dehybridization in the tendency towards metal-

lization among heavier elements is also treated quantitatively. With one free parameter, the
observed heats of formation can be fitted to about 10% accuracy. This may be compared to
accuracies of order 50% for these crystals achieved by thermochemical molecular resonating-

bond theories.

Separate treatment of HgTe, HgSe, and HgS, is given in an appendix, where

the anomalously small lattice constants of the Hg salts are explained.

1. INTRODUCTION

The heats of formation of chemical bonds play a
fundamental role in molecular and crystal physics.
In this paper we discuss these quantities for a num-
ber of semiconductors. Most of the crystals treat-
ed are binary compounds of formula A¥B*~¥ i e.,
with eight s-p valence electrons per atom pair. The
structures are then of the zinc-blende or wurtzite
type, with ideal, or nearly ideal, tetrahedral co-
ordination of four anions about each cation, and
vice versa. According to conventional chemical
usage, this means that the bonds in the crystal can
be idealized as hybridized sp® valence orbitals ori-
ented towards nearest neighbors. Differences in
cohesive energy arise because of differences in
ionicity of the bonds and differences in complete-
ness of hybridization.

These are at least two ways in which one might
hope to approach the problem of understanding the
cohesive energies and heats of formation of these
crystals.. The first way involves solving the crys-
talline wave equation as well as possible, using the
best obtainable one-electron potential, which has
been made self-consistent and which includes an
accurate approximation to exchange and correla-
tion energies. To our knowledge, the only study
which has seriously attempted to carry out this
program is one for diamond.! This program has
the drawback of being extremely complex and deal-
ing with small differences between large quantities.
For example, the energy required to remove eight
electrons from two Ge atoms is about 200 eV or
4600 kcal/mole. This makes it very difficult to
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achieve sufficient accuracy to explain, e.g., the
differences in heats of formation AH between GaAs,
GaSb, InAs, and InSb which are 17, 10, 14, and 7.3
kcal/mole, respectively.

The second approach does not utilize the wave
equation at all, but attempts to identify the factors
which are responsible for the variations in the ob-
served energies in terms of other observables.
For example, one may construct a theory based on
the heats of formation of molecular bonds, and use
these to estimate heats of formation of crystals.
To the extent that such a theory succeeds, one
learns that the crystalline bonds are similar to
molecular bonds and to the extent that it fails, one
learns that the two situations are dissimilar.

We have chosen here a middle way between these
two approaches. The basic elements of our theory
are spectroscopic. >~ It is now believed® that the
optical spectra of these crystals can be described
almost entirely in one-electron terms. Thus, from
the observed spectra it has proved possible to de-
rive ® pseudopotential form factors for each atom.
These can be transferred” from one crystal struc-
ture to another, e.g., zinc-blende ZnS to wurtzite
ZnS, and the spectrum of the second structure is
then explained from parameters determined from
the spectrum of the first structure. Thus the de-
termination of parameters from the optical spec-
trum gives our theory a basis in quantum mechan-
ics. For completeness this basis is reviewed in
Sec. 2.

The basic difference between total energies (co-
hesive energies, heats of formation) on the one
hand and one-electron energies on the other is
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that the former are much smaller than the latter.
This is a general rule; it applies, e.g., to mole-
cules such as aromatic hydrocarbons as described
by Hiickel theories.® As a result of this disparity
it is generally thought that there is no simple re-
lation between the two kinds of observables. ® For
the family of crystals described here, however,
where the valence hybridization configuration is
confined to rather narrow limits, we find thatsuch
a relation does exist. We believe this is the first
time such a relation has been established over so
wide a range of ionicity and lattice constant, i.e.,
over so large a domain of the Periodic Table.

It seems likely to us that the smallness of total
energies compared to one-electron energies arises
from the restrictions imposed on the bond wave
functions by boundary conditions and by the exclu-
sion principle. The way in which these reduce
total energies is discussed in Sec. 3.

A related effect which greatly reduces heats of
formation is the tendency towards metallic struc-
tures found in compounds composed of heavier el-
ements, e.g., Pb compared to diamond and Si.
The fact that this tendency contributes to heats of
formation and crystalline stability as much as
ionicity does was first discussed systematically
from an entirely phenomenological point of view. °
A quantum-mechanical explanation can be given'®
in terms of lowering of s valence energies com-
pared to p valence energies. The importance of
this effect for heats of formation is discussed in
Sec. 4.

These sections complete our discussion of the
factors which influence heats of formation and co-
hesive energies. In Secs. 5 and 6 we present for-
mulas which fit the observed energies rather well,
and which employ a minimal number of scaling
parameters. The formulas are compared in Sec.
7with Pauling’s thermochemical molecular model. !
Our model explains how the resonating-bond pic-
ture applies to this family of crystals, and does
so within a quantum-mechanical framework.

2. SPECTROSCOPIC THEORY OF COVALENCY
AND IONICITY

The spectroscopic theory is based on two aver-
age energy gaps, denoted by E; and C, which rep-
resent, respectively, the effects of symmetric
(Va4+Vjp) and antisymmetric (V, - V) potentials in
the AB unit cell. The average is defined in terms
of an isotropic energy gap E, which appears in
Penn’s model 2 of the energy bands of a tetrahe-
drally coordinated semiconductor. Denote the Eer-
mi energy of a free-electron gas with density equal
to that of the s-p valence electrons by Er, where

Ep=E(kg)-EQ) (2.1)
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and & is the Fermi momentum of the valence gas.
Denote the valence plasma energy by 7Zw,. Further,
denote the real part of the electronic dielectric con-
stant at long wavelengths and low frequencies by
€,(0). Then to lowest order in E,/E, Penn’s re-
lation is

€,(0) = 1 +(7iw,/E,)2(1 — E,/4E ). (2.2)

Typical values of E,/4E are 0.1, from which it
follows that (2. 2) gives results for E, which are
close to those which would be obtained from a sim-
ple two-level bonding-antibonding model.

To calculate E, and C one now notes that the
structure factors for V,+Vz and V, - V5 are pro-
portional to cosG - 7 and i sinG - 7, respectively,
where 27 is the vector connecting nearest-neigh-
bor A and B atoms and G is a reciprocal-lattice
vector. Thus the scattering associated with V-V,
is 37 out of phase with that associated with Va+Vg.
We therefore write

E,=E,+iC, (2.3)
and interpret EZin (2.2) as 1E,|%, i.e.,
E%=E%,C% (2.4)

To include crystals containing atoms from the
Ge, Sn, and Pb rows of the Periodic Table, allow-
ance must be made for the presence of nd core
electrons in nth-row atoms. The binding energies
of these d subshells are only a few rydbergs or
less. As a result, there is appreciable mixing of
valence and conduction bands with d levels, and
even before the onset of real d-core - p-conduc-
tion-band transitions at energies of order 1 Ry or
more, the oscillator strengths of bonding - anti-
bonding transitions are modified. ' These modifica-
tions can be treated empirically with parameters
for the Ge and Sn row.'® The parameters needed
for the Pb row are given in Appendix A of this pa-
per.

So far as E, is concerned, we see that the effect
of V,+ Vg should depend only on the lattice con-
stant @. From E, (diamond) and E,(Si) one finds
that *®

Ehoca-z.S (2 5)

’

and from (2. 2), (2.3), (2.5), and a and €,(0) for
each crystal, one can solve for £, and C. Values
for 70 AYB®¥ crystals are given elsewhere.'® In
Appendix A, values are given for HgS, HgSe, and
HgTe. Some representative values of E, and C are
given for the reader’s convenience in Table I.

3. BOUNDARY CONDITIONS AND DEHYBRIDIZATION

Values for the cohesive energy AG, (which rep-
resents the Gibbs free energy per atom of atomiza-
tion at STP) and the homopolar energy gap E, are
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TABLE I. Some typical values of E, and C in eV for
some tetrahedrally coordinated AY¥B®¥ crystals. A
complete list can be found in Ref. 13.

Crystal EeV) (V) Crystal EpeV) C(eV)
BN 13.1 7.71 InP 3.93 3.34
BeO 11.5 13.9 Cds 3.97 5.90
AlP 4.72 3.14 AlSb 3.53 3.10
GaAs 4,32 2.90 Gasb 3.565 2.10
ZnSe 4,29 5.60 ZnTe 3.59 4,48
InSb 3.08 2.10 InAs 3.67 2,74
CdTe 3.08 4,90 CdSe 3.61 5.50
ZnO 7.33 9.30 Cul 3.66 5.50
AlAs 4,38 2,67 CuBr 4,14 6.90
GaP 4,73 3.30 CuCl 4.83 8.30
ZnS 4.82 6.20

shown for diamond, Si, Ge, and grey Sn in Table

II. One-electron energies and total energies differ
by the sum of electron-electron interaction energies,
which in effect are counted twice in the sum of the
one-electron energies. ' It seems likely that elec-
tron-electron interaction energies are not very dif-
ferent in polyvalent atoms or in crystals, so that
the main source of AG; is the change in one-elec-
tron energy levels.

For the isolated atoms, one may imagine that one
still has bonding and antibonding energy levels, but
these are degenerate. In the crystal, the bonding
level is depressed by 3E,, and the antibonding one
raised by the same amount (see Fig. 1). With four
electrons per atom, the average energy gain is
apparently 4 X3E,=2E,. The values shown in Ta-
ble II do not satisfy this relation very well. More-
over, in partially ionic compounds, the energy gap
is larger than in purely covalent crystals of equal
valence electron density. The total cohesive energy,
however, is less. For these reasons, as mentioned
in the Introduction, it is usually assumed that one
cannot relate one-electron energy levels to total
energy in a simple way. We shall now argue that
this may be possible, and later enhance the plausi-
bility of our arguments by actually finding such a
relation.

One of the reasons the two-level estimate illus-
trated in Fig. 1 fails is that the actual electronic
energy levels are broadened into energy bands

TABLE II. Gibbs free energies of atomization at
STP for diamond-type crystals. All energies in kecal/
mole.

Crystal E, AGg AG,/Ep
C 313 320 1.02
Si 111 197 1.78
Ge 100 161 1.61
Sn 71 128 1.80
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E,(K), where k is the crystal momentum and # labels
a band. Banding was not a serious problem in (2. 2)
because we were able to fix the total oscillator
strength in terms of wﬁ, which is simply propor-
tional to the electron density N. It is a serious
problem so far as the bonding and antibonding states
are concerned. For example, if one represents
the wave functions through linear combinations of
atomic orbitals'® (LCAOs) then a valence wave func-
tion ¢ will include some antibonding contribution
at almost every point k in the valence band. (The
only exception is the point k=0 for diamond-type
crystals, where inversion is included in the group
of k.) For a given average energy gap E,, this
mixing will be of order E z/E,, which means that
for most points K in the valence band there is actu-
ally very little bonding. > This explains the small-
ness of AG¢ compared to E,.

This discussion can be rephrased in a manner
that includes molecular bonds as well. The point
is that the valence wave functions must satisfy cer-
tain boundary conditions; the symmetry and nature
of these boundary conditions, in the crystal or in
the molecule, is, in general, quite complex. (For
an attempt to present these conditions pictorially
for monatomic crystals, see Wigner and Seitz. 18
For covalent or diatomic crystals a pictorial ap-
proach is not even of much qualitative help.) After
the boundary conditions have been satisfied, little
of the energy associated with the original lowering
of bonding energy remains.

A rough estimate of the amount of dehybridiza-
tion caused by boundary conditions can be made us-
ing Penn’s model. * One can calculate!” the reduc-
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FIG. 1. Sketch showing how overlap effects lower
total energy. (a) No overlap effects, bonding and anti-
bonding levels degenerate in energy. (b) Overlap ef-
fects included, only bonding level is occupied by one
electron of up spin and by one electron of down spin.
The two atoms which are bonded are labeled 1 and 2,
and the wave functions which are shown are only sche-
matic.
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tion in total one-electron energy in this model. For
diamond and Si the results are of the right order
of magnitude, but the trends in Table II are not re-
produced, presumably because of the importance
in Si of p-d hybridization, !® which is not treated
explicitly in the Penn model. Further comments
on the role played by p-d hybridization can be
found in Appendix B.

4. METALLIZATION AND DEHYBRIDIZATION

We now turn our attention to a specific dehybrid-
ization mechanism which is of great importance in
determining heats of formation, especially for
compounds composed of atoms from the Ge, Sn, or
Pb rows of the Periodic Table. First consider a
crystal with fixed E, determined by (2.2). Then
we expect the largest bond energy when nearly all
the optical oscillator strength is concentrated near
hw=F, with a small tail extending to higher ener-
gies. For example, if one conduction band should
shift to much lower energy, then we would see ap-
preciable absorption at an energy Ey <<E,. Pertur-
bation theory tells us that this lowered conduction
band will hybridize with the valence bands by an
amount proportional to 1/E;>1/E,. This will reduce
cohesive energies and heats of formation.

We show in Fig. 2 the absorptive part of the di-
electric constant €,(w) for diamond, Si, and Ge
plotted against the reduced frequency variable x
=hw/E,. The largest peak in €,, labeled E,, oc-

0 2 4 6 8 1.0 12 14 16
hw/Ey

FIG. 2. Broad features of €,(w) for diamond-type
crystals plotted in reduced units. The purpose of the
figure is to show that the one-gap approximation is rel-
atively good for diamond, but that a low-energy peak
near x=7%w/E,=0.5 develops in Si and becomes stronger
and shifts to smaller x in Ge and shifts further in grey
Sn (not shown).
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curs near x =1, as expected. However, as we go
down the Periodic Table, a low-energy peak de-
velops which has shifted to E,/E,=0.5 by the time
we reach Ge. (It shifts even further, to E,/E,=0. 4,
in grey Sn, which is not shown.) This structure
labeled E, has been identified as the “A peak” in

a number of energy-band studies.’%*° It is asso-
ciated with transitions from a valence band of bond-
ing p character to a conduction band of antibonding
s character. The reduction in the energy of the
latter with increasing atomic number is explicable
in terms of atomic energy levels. '

It has been known phenomenologically for some
time ° that with increasing atomic number of the
constituent atoms (all other things, especially
valence, being equal) that there is a tendency to
replace covalent structures by metallic ones, a
tendency which has been called “metallization.”
For example, in column IV C, Si,and Ge form the
diamond structure, Pb is a fcc metal, and Sn may
be either grey (diamond structure) or white (tetrag-
onal metal).

Some authors have suggested that this tendency
may be associated with the smallness of E,, the
smallest direct gap between valence and conduc-
tion bands. It is true that £, vanishes in grey Sn,
but we regard this as an accident which plays no
essential role in the metastability of Sn against
grey or white forms. The reason for this is that
the volume of % space near k=0=T, for which the
conduction-valence energy difference is E,, is very
small. A better measure of dehybridization and
metallization is afforded by a suitably chosen aver-
age E of E, and of the energy E, of the lower peak
in Fig. 2.

Using a drastically simplified band model, Heine
and Jones have proposed ? that the covalent metal-
lic transition occurs when the first- and second-
order pseudopotential contributions to E, no longer
interfere constructively, i.e., when the first-or-
der contribution (which is V5, in pseudopotential
language) goes through zero. We find this sugges-
tion attractive, but the empirical pseudopotential
form factors &7 are not sufficiently accurate for
our present purposes. We therefore measure
this effect spectroscopically, in terms of the fac-
tor

m=1-E,/E. (4.1)

Because (1-m) measures the dehybridization of the
wave function, the effect on the energy may depend
on (1-m)%=(E,/E)?.

5. HEATS OF FORMATION

We now turn to the factors that influence specif-
ically the heat of formation. We are concerned
especially with crystals like InSb, GaSb, and InAs,
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which have small heats of formation, although our
final formula fits all tetrahedrally coordinated bi-
nary crystals well.

First consider the energy which has received
the greatest theoretical attention, the exchange
and correlation energy. Doubtless the emphasis
on this quantity stems from the pioneering work
of Wigner and Seitz '*''® (WS) on the alkali metals.
There it was shown that exchange and correlation
account for most of the cohesive energy. How-
ever, as emphasized by WS, the monovalent alka-
lies represent an exceptional case of quite low
electron density. In covalent and ionic materials
the role played by many-body effects is much less
important. In particular, it was shown by WS (and
it has since been confirmed by many others) that
the exchange and correlation energy changes quite
slowly with density. Contributions of many-body
interactions to the heat of formation are therefore
expected to be small.

Specifically, structure-dependent energies are
likely to be associated with energy gaps. This ap-
pears explicitly in the Penn semiconductor model,
as discussed elsewhere. %' Metals like In do not
have close-packed structures, and one expects
some covalent contribution to their cohesive ener-
gy. However, these contributions are expected
to be small, because (unlike tetrahedrally coor-
dinated crystals) their Fermi surfaces are in gen-
eral far from congruent to the Jones zone. 2

In order to include the ionic-ordering energy
which causes the atoms A and B to form inter-
penetrating sublattices in the A"B®¥ crystal, we
assume that the heat of formation AH is propor-
tional to f;, the spectroscopic ionicity which is
defined by

fi=C?/(E2+C?), (5.1)

where E;, and C are the average covalent and ionic
energy gaps defined in Sec. 2. Tables of f; are
available. '® Dehybridization effects are included
in two ways.

(a) The fraction of covalent energy which is not
lost by dehybridization depends on the extent to
which valence and conduction bands mix. This, in
turn, depends on the lattice constant @ through
competition between kinetic and potential energies.
Thus we assume AH cca™® and determine s from
experiment.

(b) The difference in energy between the tetra-
hedral binary structure and the elemental metals
is proportional to D = [1-b(E,/E)?], where the val-
ue of b~! is expected to be close to the ratio of
(EZ/E)2 in grey Sn, which is metastable relative to
the metallic form white Sn.

We have mentioned previously that E is expected
to lie between the optical energies E, and E,. We

find that any value of E in the range
E,<E<E, (5.2)

gives about the same fit to experiment. In the cal-
culations reported below, we used

E=3(Ey+E,) (5.3)

because this appears plausible in view of the rela-
tive strengths of the Ey and E, peaks. (The E,peak
is several orders of magnitude larger than the E,
peak, but as Ey<<E, in some cases, this increases
its dehybridizing effects.)

In conclusion, our formula for AH is

S 2
AH(AB) = AH0<5£€> [1- b(ﬂ”f,(AB) (5.4)
B E ’
where E is given by (5.3) and AH, is an over-
all scaling factor.

The value of s is fixed chiefly by AH in
three crystals: BN, BeO, and ZnO, which are
the three crystals containing first-row atoms
(and hence small a) about whose optical spectra
the most is known. At STP, both N and O are
found as gaseous diatomic molecules. There-
fore, according to Pauling,!* corrections should
be made to AH of 55 and 26 kcal/mole, per N
and O atom per formula unit, respectively (tri-
ple and double bonds, respectively, instead of
single or metallic bonds). These corrections
are somewhat arbitrary, but we have subtracted
them from the observed (negative) heats of for-
mation (corresponding to greater magnitude of
AH). This gives

s =4, (5.5)

Some correction should also be made for the
Cu salts, because part of the cohesive energy of
metallic Cu stems from the d electrons, which
play a less important role in salts. We have
therefore subtracted 20 kcal/mole (about one-
half of the difference in cohesive energy between
K and Cu) from the observed values of AH for
CuCl, CuBr, and Cul. The scaling factor

AH, = 71.17 keal/mole (5.6)

is chosen to make the average error in fitting
to experiment zero for the crystals shown in
Table III. The value of E,; is not known exper-
imentally for the crystals marked with an aster-
isk; in these cases the theoretical values'® of
E, were used. The value of b used is

b=0. 0467, (5.7)

which is the same as the value of (E/E,)? in
grey Sn. With these values of AH,, s and b
(5. 4) is accurate to about 10%.

One of the interesting consequences of (5. 4) is
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TABLE III. Values of AH according to Pauling’s
thermochemical molecular theory and the present spec-
troscopic theory with s =4 are compared to experimen-
tal values. The former and latter have been corrected
for compounds containing N, O, or Cu as described in
the text. All energies in kcal/mole.

Crystal AH (Pauling) AH (spectro ) AH (adj expt)
BN* 69.0 104.0 116.2
BeO* 184.0 199.3 169.1
AlP* 24.8 24,0 39.8
GaAs 11.0 17.0 17
ZnSe 29.4 41,4 39
InSb 2.8 8.2 7.3
CdTe 4.4 22,9 22.1
ZnO* 166, 1 93,7 109.2
AlAg* 17.3 18.1 27.8
GaP 17.3 26.9 24,4
ZnS 37.3 45.9 49,2
InP 11.0 20,4 21.2
Cds 29.4 36.2 38.7
AlSb 11.0 19.5

Gasb 6.2 9.2 10.0
ZnTe 11.5 25,1 28.1
InAs 6.2 11.3 14.0
CdSe 22.5 30.0

Cul* 8.3 14,0 16.2
CuBr* 18.6 23.3 25.0
CuCl 27.8 39.9 32.8

that when E is small enough, AYB®¥ crystals need
no longer be tetrahedrally coordinated even though
f1<<0.78, the critical value for all other cases to
transform to the rock-salt structure.3'!® Thus it
appears that T1Bi and T1Sb are the only compounds
with N =3 that have the rock-salt structure.
Some discussion of alternative values of the
parameter s is in order. If Pauling’s multiple-
bond corrections for N and O are omitted, an
equally good fit (accurate to about 10%) to the
observed values is achieved with s = 3 and AH,
= 68. 6 kcal/mole [ see Table IV]. If we view the
heat of formation as arising from the terms of order

(E%/Er) In(E,/Ep), (5. 8)

calculated !” for the model semiconductor, then
at least for N =3 crystals, where C<E,, E, scales
like E,, i.e., like a®?®[see Eq. (2.5)]. Then
because E pxa? to logarithmic order, (5.8)scales
like a®. Thus there is some theoretical justifica-
tion for using s =3 and dropping the Pauling multi-
ple-bond corrections. This appears to be largely
a question of taste which we shall not pursue here.
There are two striking features in our re-
sults, The first is that AH is proportional to
the spectroscopic ionicity f;. This point will
be discussed in more detail in Sec. 7. The
second is our success in fitting the very small
heats of formation of InSb, InAs, and GaSb at
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the same time that the much larger heats of
formation of other crystals which have nearly
the same lattice constant are explained. This
success derives from the presence of the de-
hybridization factor D.

The importance of the E, gap in determining
critical pressures for phase transitions from
tetrahedral to metallic or rock-salt structures
was first stressed by Jamieson.? It has, how-
ever, been pointed out by Adler?” that the E,
(and also E,) gaps incvease with pressure, which
would appear to stabilize the tetrahedral struc-
ture. This effect can be explained by noting
that

b= (E/Ea)irey Sn (5. 9)

will probably increase with pressure more rap-
idly than (E/E;)%;. (Very little pressure is re-

TABLE IV, Comparison of values of AH obtained
theoretically with s=3 with experimental values. Only
the values for compounds containing Cu have been ad-
justed, no correction has been made for N or O atoms.
All energies in kcal/mole. The theoretical spectro-
scopic values in this table and in Table III for crystals
marked with an asterisk have utilized theoretical values
of E; and/or E, taken from Ref. 19, while the theoretical
values for the remaining crystals are based entirely on
observed values of Ej, E;, E,, and €,. The experimen-
tal values are taken from Wagman et al., ® the value for
GaP is taken from Ref, 25.

—AH(spectro.) —-AH,

Crystal —AH (Pauling) exot
BN* 13.6 63.6 60.8
BeO* 158.0 128.5 143.1
AlP* 24.8 22,2 39.8
GaAs 11.0 16.3 17
ZnSe 29,4 39.8 39
InSb 2.8 9.0 7.3
CdTe 4.4 25.1 22.1
ZnOo* 140.1 72.5 83.2
AlAs* 17.3 17.3 27.8
GaP 17.3 24,8 24,4
Zns 37.3 42,1 49,2
InP 11.0 20.3 21.2
Ccds 29,4 35.8 38.7
AlSb 11,0 20.3

GaSh 6.2 9.5 10.0
ZnTe 11.5 25,9 28.1
InAs 6.2 11.5 14.0
CdSe 22.5 30.9 32.6°
Cur* 8.3 14.8 16.2
CuBr* 18.6 22,7 25.0
CuCl* 27.8 34,9 32.8

2D. D. Wagman et al., National Buveau of Standards
Technical Note No. 270-3 (U, S. GPO, Washington,
D. C., 1968).

PP, Goldfinger and M. Jeunehomme, Trans. Faraday
Soc. 59, 2851 (1963).
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quired to transform grey Sn into white Sn.) We
hope to return to this question elsewhere.

6. COHESIVE ENERGIES

We define the cohesive energy AG,z as the
Gibbs free energy of atomization of the AYB%Y
crystal at STP. This is given by

AG 25 = 6Gyp + AG, + AGp, (6.1)

where AG, and AGp are the free energies re-
quired to atomize the elements and 6G,p is the
free energy of formation.

To determine the dependence of AG,p on E,
and C, consider the diamond-type crystals with
A =B and N =4, Because E, is a function of
lattice constant @, one may investigate the equiv-
alent question of the dependence of AG,, on a.
If one assumes that

AG 4, xa™, (6.2)

then one finds (broadly speaking) that n = 2 gives
a good fit. Because kinetic energy also scales
like (6.2) with » = 2, and because a convenient
measure of kinetic energy is the Fermi energy
Er of a free-electron gas of density equal to
that of the valence electrons, one may measure
AG, 4 in units of Er. When this is done'® the
results shown in Table V are obtained. Clearly,
AG 24/EF is not constant. This is because there
is an important contribution to AG,, from p-d
hybridization. This contribution is virtually ab-
sent in diamond, because of the large energy
required to promote 2p states to 3d states. It
reaches a peak in Si, just before the 3d transi-
tion series begins. It is reduced in Ge and Sn,
because the 4d and 5d valence wave functions,
respectively, are orthogonal to 3d and 4d core
states. This explanation of p-d hybridization
has also been utilized to explain®! trends in the
molecular binding energies of diatomic halides
and polyatomic hydrides.

The cases where the cores of A and B are
isoelectronic are of particular interest because
in such cases a is virtually independent of N,
i.e., only C varies appreciably as a function
of N. This also holds true for any sequence

TABLE V. Comparison of cohesive energies in kcal/
mole in diamond-type crystals with Fermi energy of
free-electron gas of density equal to that of the valence
electrons.

Crystal Ep aGg AGg/EfR
C 667 320 0,478
Si 287 197 0.685
Ge 265 161 0.607
Sn 210 128 0.608

AVMB®¥  providing either A or B belongs to one
row and B or A belongs to another. We there-
fore plot in Fig. 3 AG,AB) for all such se-
quences, with one exception. This is compounds
with one, and only one, first-row atom. In this
case, the size disparity between the cores of
the two atoms is so great that there is no sim-
ple pattern.

The results which are illustrated in Fig. 3
are the following.

(a) When the cores are strictly isoelectronic,
i,e., both atoms belong to the row R, the follow-
ing simple relation 18 holds to within the limits of
experimental error:

AG((R,f;) = AG(R, O)[1 - R(R)f,], (6.3)

where f; is the spectroscopically defined ionicity,
accurate to 1%.

(b) When one atom comes from row R, and
one atom from row R,, a relation similar to
(6.3) is approximately valid, *® withR~ (R, +R,).
However, there is a small tendency for AG,(AB)
to be displaced towards the value given by (6. 3)
with R=Rp, i.e., there is a small shift towards
the linear relation valid for the row R to which
the anion belongs. For GaSb and InAs (R, =3,

R, =4), this shift amounts to + 6 kcal/ mole,
respectively, and it represents a core effect
absent from any valence-bond model.

(c) The values of k(R) are remarkably con-
stant. The only appreciable variation is the
difference between the value found for R = 1,k(1)
= 100 kcal/mole and the values for other val-
ues of R, k(R = 2)= 80 kcal/mole. If one writes

k(R(a)) « a2, (6.4)

then »n, =~ 0. 5.

The scaling results (6. 3) and (6. 4) suggest the
following picture for the binding energy of tetrahe-
drally coordinated crystals. For the homopolar
values AG,(0) it appears that most of the binding
energy has kinetic character and is therefore as-
sociated with delocalized (itinerant) valence elec-
trons. This confirms the relevance of the single-
particle approximation because even though the one-
electron functions ¥; have not been used to calculate
AG, the translational periodicity of the crystal re-
quires ¢; to have the Bloch or delocalized form. If
similar scaling arguments are applied to small mol-
ecules (such as MH;, where M =N, P, As, or Sb),
one finds n,=1, i.e., the binding energy scales like
a potential energy, as one would expect for localized
bonds. Thus scaling provides a simple way of show-
ing that localized bonds are appropriate for dis-
cussing cohesive energies in molecules, but that the
valence electrons in covalent crystals are itinerant,
in much the same way as in metals like Na or Al.
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FIG. 3. Plot of the Gibbs free energy of atomization
of A¥B8s-N crystals for sequences in which one atom be-
longs to a row Ry of the Periodic Table and the second
atom belongs to a row R,. The lattice constant is ap-
proximately the same for all crystals belonging to the
same sequence. The energies of atomization are seen
to be linear functions of ionicity. The significance of
the slopes is discussed in the text.

The second scaling result concerns 2(R), the
slope which describes the reduction in cohesive
energy with increasing magnitude of C compared
to E,. The fact that n, = 0.5 suggests that |AG|
is reduced because energy is required to screen
Va—=Vg=Viene Dielectric screening can be
described at short wavelengths by the Thomas-
Fermi screening wavelength X = k;l, This sug-
gests

B(l) < Ve (@/N), (6. 5)

since when X is large, little screening of V.
has taken place. Of course, V.« a™, and
the Thomas-Fermi formula shows A o« a "1/2 .
Thus (6.5) gives n, = 0.5, as observed experi-
mentally.

7. RESONATING-BOND THEORY

It is instructive to compare Eq. (5.4) with
Pauling’s formula'!

AH 45 = N(X4~X3p)?B,. (7.1)

Here AH,p is the observed heat of formation
augmented by multiple-bond corrections when B
= N or 0. The parameters X, and Xy are ad-
justable and are fixed to fit molecular heats of
reaction. One finds that (7.1) fits the observed
heats of reaction with an rms accuracy of 50%,
although in most cases the agreement is good
to 30-50%. One should perhaps not expect bet-
ter agreement between crystalline and molecular
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energies.

It has been noted® that C,, is the crystalline
analog of AX,p = X, — X5, So that to order AX%,,
(7.1) and (5.4) agree. However, when C,pz >E,,
one no longer can say that

fiAB) = C%s/(E% + C%p) (7.2)

is proportional to C%;. It turns out that C 45
< E, for AYB®" crystals with N = 3, but for N
= 2 one has the reverse inequality C,5 > E,.
This saturation effect is simulated in Pauling’s
theory by the presence of the factor N, which
measures the number of resonating bonds. In
the spectroscopic theory C also doubles (if the
bond length does not change, e.g., on going from
GaAs to ZnSe), but saturation is achieved be-
cause of the demoninator (E2+C?™ in the def-
inition

fi=C¥(E% + CP. (7.3)

One may compare this with Pauling’s ex-
pression (7.1) by rewriting (7.3) as

fi= (C¥EDEY/E; + C*) = (C*/EDfe,  (1.4)

where f, is the fraction of covalent character
defined by Eq. (5.26). One sees that the fac-
tor C%/E2 corresponds to (X ,— X5)? while f, cor-
responds to $N. The variation of N is integral,
while f, is a continuous spectroscopic variable
which has no artificial atomistic character (i.e.,
counting s and p states in a partial-wave expansion
as one does to define valence). In general, f, is
not proportional to N, i.e., f, is not the same for
all N=3 crystals, and the average value of f, for
all N =2 crystals is not ¥ the value of f, for all N
=3 crystals. (The actual ratio is closer to :3,-.)
This explains, to some extent, the point? that
Pauling’s choice of molecular parameters gives good
results for N =2 crystals, but not for N=3. Indeed
it was shown 2 that when the scaling energy B, in
(7. 1) is chosen to fit the case N =2, one may solve
(7. 1) for all N =3 crystals for N itself, regarded
as an unknown. The value obtained is 4.2+1.5.
[The large error presumably stems from the in-
ability of (7. 1) to absorb the factors D (Eg, E,, E3)
and a~° in (5. 4) entirely into the electronegativity
parameters X, and Xz.] Note that

'4?_2z <fc>N=2/<fc>N=3/z% #2, (7.5)

Thus (7. 5) gives fairly good statistical evidence
that 4f, is a better measure of the number of
“effective” or “resonating” bonds than is the clas-
sical valence N. This is in accordance with the
intuitive interpretation of f,=1— f; as a measure
of the fraction of covalent character of the sp®
bonds.
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Another way of interpreting the ratio

<fc> N=2/ <fc> N=3

present in (7.5) is to note that it is approximately
equal to (%)2, i.e., Pauling’s formula (7.1) would
give better agreement with experiment for crystals
if NB, were replaced by :N2B,. The appearance
of the factor N2 is consistent with the itinerant
nature (energy scales like a™®) of semiconductor
binding noted previously in Sec. 6. It has the
simple physical interpretation that the heat of for-
mation depends on the ability of an electron in one
of N bonds in the crystal to “hop” to one of N
neighboring bonds. In some molecules, on the
other hand, different kinds of scaling are found.
In the CH, family, bond energies scale like a™¥2,
in the NH, family, like a™. In the latter family
the bonds are nearly perpendicular, there is little
hybridization, and the binding is of a more local-
ized nature; so that a factor N would be appro-
prate. Although one cannot argue that the pres-
ent picture is unique, we find the factor N2 for
itinerant crystalline bonds to be a natural reflec-
tion of the difference in binding between nonaro-
matic covalent molecules and covalent crystals. In
conclusion, note that this argument applies only
to the average of all N =2 crystals compared

to the average of all N=3 crystals. In any in-
dividual case, f, is a better variable to use than
Na, because of the continuous nature of the for-
mer and the discrete nature of the latter.

8. AUV ¢V, COMPOUNDS

Compounds such as ZnSiP, and CdSiP, have
been discussed in a number of papers by Russian
workers. ? The atoms in these crystals are
either exactly tetrahedrally coordinated (sphaler-
ite structure) or nearly so (chalcopyrite struc-
ture) and the compounds can be regarded as an-
alogues of A"B%" crystals with N=3. At pres-
sent the dielectric constants and optical spectra
of these crystals are not known with sufficient
precision to warrant an extension of the spectro-
scopic theory of AYB®Y crystals to them. How-
ever, the heats of formation of ZnSiP, and CdSiP,
have recently been measured, % and it is of in-
terest to compare these with the heat of forma-
tion of GaP.?® The values are (in kcal/equiva-
lent two-atom mole)

ZnSiP, and CdSiP, ~19,
GaP: 24.4.

Our formula (5.4) for AH depends on sever-
al factors. The lattice constants, or more prop-
erly bond lengths, are all very similar. The
experimental values of E, and E seem to be
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quite similar in all three crystals as well.# We
are thus left with the factor f;.

We suggest that f; be decomposed as in (7.4),
and that the factor C%/E2 be treated as approxi-
mately the same in the three crystals. We saw
in Sec. 7 that f, is similar to (i N)?, where N
is the number of resonating bonds in Pauling’s
classical chemical model. In ZnSiP, we have
two kinds of bonds to consider: Zn-P and Si-P.
In the case of ZnP, the Zn atom can contribute
only two electrons, so that f, for this bond may
be close to f, in ZnS. Similarly, in the Si-P
bond, f, may be close to the AlP-bond value.
This suggests that

fZnSiP,) = 3[f (ZnS) + f,(ALP)]

= % (0.37 + 0.70), (8.1)

where the numerical values are taken from Ref.
19. By comparison, f, in GaP is 0.63. Thus
one has

AH(ZnSiP,) = AH(GaP)(0. 53/0. 63)
=20. 5 kcal/(equiv. mole). (8. 2)

Of course, (8.2) is in good agreement with
experiment (by construction). The analogies
made are arbitrary, but at the same time we
believe them to be of some interest, as they
suggest that bond counting may be a useful way
of approaching heats of formation in cases where
the number of valence electrons per atom pair
is equal to eight only on the average.

9. CONCLUSIONS

The heats of formation of crystalline com-
pounds have traditionally been considered by
solid-state theorists to be beyond the limits of
accuracy achievable in quantum-mechanical cal-
culations. We have shown here that by focusing
attention on the single family of compounds with
tetrahedral coordination one can exploit the sim-
ilarities in optical spectra to construct a quan-
titative theory. The theory elucidates the
specific mechanisms which play an important
role in determining heats of formation in this
family. Thus it is not only more accurate than
general thermochemical theories of the heats of
formation of molecular bonds but it also pro-
vides insight into characteristically crystalline
effects. One of these is dehybridization, an-
other is the importance of the factor f, or NZin
measuring resonating-bond effects.

Another way of appreciating the content of
this theory is to assess both the number of in-
dependent factors in the theory and the number
of independent parameters. There are about
three of each in the present theory. By con-
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trast, Pauling’s theory !! has basically one idea
(the concept of extra-ionic energy) and several
score parameters (the elemental electronegativ -
ities). We feel that the present theory provides
a more informative and less arbitrary picture
of the heats of formation of tetrahedrally coor-
dinated compounds .
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APPENDIX A

The two parameters E, and C which character-
ize the spectroscopic theory of covalent bonding
were determined in previous papers 2'1%1% py
studying the electronic spectra of diamond-type
AA crystals (to determine E,) and then by extend-
ing the analysis to zinc-blende AB crystals, es-
pecially in cases where the cores of A and B are
isoelectronic. (The latter form horizontal sequen-
ces such as Ge, GaAs, and ZnSe.) The theory was
worked out completely for elements belonging to
the first four rows of the Periodic Table.

In attempting to extend the theory to the com-
pounds of elements in the fifth or Pb row of the
Periodic Table, one faces several difficulties not
encountered with the first four rows. The group-
IV element of the fifth row, Pb, does not form a
diamond-type crystal. Indeed none of the horizon-
tal sequence of compounds (Pb, TIBi, HgPo, and
AuAt) forms a tetrahedrally coordinated structure.
Values of the low-frequency limit of the electronic
contribution to the dielectric constant, the prima-
ry empirical parameter of the theory, ?'** are not
available for the few skew compounds that do form
tetrahedrally coordinated diatomic crystals con-
taining one element from the fifth row.

Because of the above difficulties and because
of the limited number of tetrahedrally coordinated
compounds containing fifth-row elements that have
been prepared and studied, the following discus-
sion should be considered tentative. Furthermore,
only HgS, HgSe, and HgTe in the zinc-blende struc-
ture will be explicitly discussed.

It is now generally agreed that HgSe and HgTe
are semimetals®~3! having the I'y and Ty levels in-
verted relative to the normal zinc-blende semi-
conductors (e.g., InSb) in the manner proposed
by Groves and Paul®® for gray tin. Reflectivity
spectra in the visible and ultraviolet **%* and
thermoreflectance in the visible®® are also avail-
able for HgSe and HgTe. However, we are not
aware of any spectra that have been obtained for
HgS in the zinc-blende structure. (It is known
that the color of this substance is black, as op-
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posed to the cinnabar form which is red, so that
its lowest band gap must be below the visible. )
Preliminary orthogonalized-plane-wave (O PW) cal-
culations for these three materials have beeu pre-
sented by Herman, Kortum, Kuglin, and Shay. %

When one attempts to fit the parameters of the
spectroscopic theory, !® C and D,,, to the spectra
observed in HgSe and HgTe, three anomalies are
apparent. Whereas one would expect the lattice
constants of Hg salts to be larger than the lattice
constants of the corresponding Cd salts, the ob-
served lattice constant of HgTe is less than that
of CdTe, InSb, and Sn and that of HgSe is about the
same as that of CdSe, ZnTe, InAs, and GaSb. %!
Although a reasonable choice of parameters fits !°
the higher band gaps to experiment with no diffi-
culty, there is no choice of C and D, for either
HgSe or HgTe which can fit E; and E, to experi-
ment within the accuracy expected (+0. 2 eV) from
our experience with 19 other semiconductors. !°
The temperature dependence of the E, band gap is
anomalously large and is opposite in sign to that
in normal semiconductors (e.g., InSb). %

We propose that these three anomalies have the
same origin. We suppose that the reduction of the
observed lattice constant results from the compres-
sion of the crystal from the density expected on
the basis of covalent radii.®”*® This compression
occurs because the bulk modulus of the crystal at
the expected density is small®*® and the band con-
tribution to the cohesive energy (and heat of for-
mation) increases rapidly with compression.
Therefore we shall estimate the uncompressed
lattice constants of the Hg salts and calculate band
structure fixing the parameters, so that after the
crystal is compressed to the observed density,
the calculated gaps agree with experiment. We
then show that this assignment of parameters yields
calculated values of the heats of formation in good
agreement with experiment. *°

To determine the uncompressed lattice con-
stants, we shall assume that the covalent radius
of the fifth-row elements is 4% greater than that
of the fourth-row elements. (Indeed, Pauling®®
indicates that the covalent radius of Pbis 4% great-
er than that of Sn.) Thus the uncompressed lat-
tice constants of HgTe, HgSe, and HgS are taken
to be 6. 621, 6.203, and 5.977 A, respectively,
as compared with the observed (compressed) val-
ues’' 6.429, 6.084, and 5.852 A. Thus we shall
assume that the volume compression is 9. 2, 6.0,
and 6. 6%, respectively. We estimate the energy
shift per unit dilatation as 7 eV for Ey*! so that the
effect of the compression will be to raise the E,
(I'ys—T'y) gaps by 0.7, 0.4, and 0.5 eV, respec-
tively. We also assume that the E, (Ag—A,) gaps
should be raised about 0.5 as much as the E, gap and
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the E, (X,~X,) gaps about 0. 2 as much while the
effect on the other gaps should be negligible for
our purpose. !

With these assumptions we may calculate 1% the
band gaps shown in Table VI using the parameters
shown in Table VII. All values shown are for the
gaps with the effect of spin-orbit splitting re-
moved. (We have assumed the E, splittings for
HgTe and HgSe are 1. 20 and 0. 45 eV, respective-
ly.) The values of C and D,, for HgTe and HgSe
were selected to give a good fit of the compressed
spectra to experiment. The C and f; values so
obtained are consistent with the values expected
from the theory of Ref. 13. The value of f; for
HgS was fixed at 0. 79 because that compound also
occurs in the cinnabar structure, which may be
viewed as a distortion of the NaCl structure. ?! It
has previously been demonstrated *'*'!° that the
critical ionicity delineating the boundary between
the compounds forming tetrahedral crystals and
those forming NaCl-type crystals is 0. 79. This
value of f; and thus C is also consistent with Eq.
(4.5) and b=1.5 in Ref. 13. The value of D,, for
HgS was estimated from the value assumed for
HgSe. %

In comparing the calculated and observed band
gaps of HgTe and HgSe, we have identified the peaks
observed at 6. 55 and 7.6 eV, respectively, with
E transition. This is the same assignment as was
made by Cardona and Greenaway.> However,
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Scouler and Wright®* and Phillips® have argued
that this assignment could not be correct because
the spin-orbit splitting did not correspond to that
observed in the E; peaks. This argument has proved
most useful in analyzing the spectra of most zinc-
blende crystals.® However, here we believe that
this objection is not valid because of the inversion
of the I'y and I'g levels. Such an inversion distorts
the spin-orbit splitting of the E, peaks because of
the proximity® of the A critical point to I

In Table VII we also indicate the values of AH
calculated on the basis of the predicted band struc-
ture using Eq. (5.4) and s =3. It is seen that the
calculated and experimental values agree to within
4 kcal/mole, compared with the experimental un-
certainty®® of order 2 kcal/mole.

The results in Tables VI and VII yield some in-
formation as to the adequacy of the assumptions we
have made. For both HgTe and HgSe, the calcu-
lated E, gap is 0. 2 eV lower than observed while
the calculated E, gap is 0. 2 eV too high. This sug-
gests that either we have underestimated the ex-
tent of the compression from the density indicated
by the covalent radii, i.e., underestimated the ra-
dii of the fifth-row elements, or we have underes-
timated the derivative of the E, gap with compres-
sion and overestimated the derivative of the E, gap.
It would be useful if experiments similar to those
of Zallen and Paul* could be performed on HgTe
and HgSe to determine these derivatives.

TABLE VI, Band-structure parameters for the Hg salts. The energies quoted for the E(, E;, and E{ gaps repre-
sent weighted averages of the spin-orbit split energies.

E; ev E, eV Eyy eV E,peVv Ejev Efev
gngﬁe. gzxfagded -0.8 2,40 4.60 5.17 4.63 6.40
gg::';:;;ng;essed -0.1 2.7 4.7 5.3 4.6 6.4
gg:T:. Egi&?mem +0.1% 2, 5P 4,9° 5.4° 4,3° 6.55°
ggfgg’ggagded —0.7 3.0 5.6 6.3 5.65 7.64
ngz.%gin%essed -0.3 3.2 5.7 6.4 5.7 7.6
ggfz'%:zegmem -0.12 3.0° 5.7° 6.45° 5.7° 7.6°
ggf;:gg?ngfd -0.6 4.3 7.61 8.65 7.83 10.10
HgS Compressed -0.1 4.5 7.8 8.8 7.8 10.1

(a=5.852 4)

*References 27 and 29.
PReference 35.
°References 33 and 34.
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TABLE VII. Bond parameters for the Hg salts and
values of heats of formation. For the reader’s conve-
nience the corresponding values for the Cd salts are
listed to facilitate comparison.

—AH cale -AH expt
D,, E,ev CeV f; kcal/mole kcal/mole
HgTe 1.60 2,92 4.0 0.65 10.2 10
HgSe 1.49 3.43 5.0 0.68 7.0 11
HgS 1.43 3.76 7.3 0.79 16.4 12.8
CdTe 1.43 3.1 4.4 0,68 25,1 22.1
CdSe 1.34 3.6 5.5 0.70 30.9 32.6
Cds 1.20 4.0 5.9 0.69 35.8 38.7

When considering the calculated heats of forma-
tion in Table VII, one should bear in mind that in
these cases the dehybridization term is quite large.
Thus the calculated values are quite sensitive to
the values of E and E, used in Eq. (5.4). If, for
example, for HgSe we were to assume E, were 5.7
eV instead of 6.0 eV (the average of the calculated
E,, and E,; values), then the value calculated for
— AH would be 10. 4 instead of 7.0 kcal/mole. How-
ever, in view of the uncertainty of the experimental
data, *® we do not make such corrections here.

We conclude this appendix by comparing our
band-gap calculation with the preliminary OPW cal-
culation of Herman ef al.®® Herman et al. adjusted
their calculation of HgTe and HgSe to fit the ob-
served E, and E, gaps at the observed lattice con-
stant. They did not present a theoretical €, or
reflectivity spectra so that the comparison with ex-
periment is restricted. However, Herman et al.
concluded that the experimental identification of the
large E, peak was incompatible with their calcula-
tion. Their E, peak is reasonably compatible with
experiment if the Cardona-Greenaway ** assign-
ment is made instead of the Scouler-Wright* as-
signment. We feel that these two observations
support our contention that the Cardona-Greenaway
assignment is correct and that the spectra of HgTe
and HgSe can only be understood as resulting from
the compression of the crystal from the density
predicted on the basis of covalent radii.

For HgS, Herman et al. made no adjustment to
experiment as no values for E, and E, were avail-
able. They obtained estimates for Ejand E, of 1.5
and 5.1 eV as compared with our estimates of -0.1
and 4.5 eV, respectively. The other gaps are in
fair agreement. We note that before adjusting to
experiment Herman et al. were overestimating
the E, gap in HgTe and HgSe by about 1 eV. % Fur-
thermore, with our estimate we obtain fair agree-
ment with experiment in the calculated value of AH,
whereas if we use Herman’s estimate we would cal-
culate — AH = 38 kcal/mole which is three times the
reported value.
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The contraction of HgSe and HgTe discussed here
casts some light on the question of excitonic in-
stabilities which has received much theoretical at-
tention. ** In semiconductors it has been suggested
that such instabilities may give rise to lattice dis-
tortions if valence- and conduction-band edges
should occur at different points in k space and be
quasidegenerate in energy (to 0. 01 eV or better).
It has been pointed out by one of us'® that in two-
dimensional crystals of the layer or sandwich type
(such as GaSe), excitonic binding energiesare much
larger (of order 0.2 eV), but that even in those
crystals such instabilities appear rather improb-
able. The Hg salts provide further experimental
evidence to indicate why such instabilities have yet
to be observed experimentally.

As we see from the definition (5. 3) of E, it isthe
average band gap between the highest valence band
and lowest conduction band which controls dehy-
bridization energies and produces lattice contrac-
tions. Such short-range bond energies are of or-
der 1 eV and are thus 100 times larger than long-
range band-edge exciton energies. According to
Halperin and Rice** “in order for some kind of dis -
torted phase to exist, it isnecessary and sufficient
that there should not be a “large” first-order tran-
sition, involving a discrete change in lattice con-
stant but no change of symmetry, which takes one
directly, at low temperatures, from” no band over-
lap to nonzero band overlap. In fact, however, the
excitonic lattice distortion will also alter dehy-
bridization energies. Because these bond energies
are much larger than exciton energies, they should
always tend to suppress the excitonic effect, and
it would be a great accident if they were not suc-
cessful in doing so. In particular, if one looks
for the effect in mixed crystals, such as Cd,Hg,_,
XTe as a function of x, the local strain fields as-
sociated with fluctuations in composition would be
sufficient to suppress the effect. In this connec-
tion it is interesting that the materials proposed44
as candidates for excitonic phase transitions differ
from zinc-blende semiconductors primarily by the
fact that very little is known about their band struc-
tures. This precludes giving a semiquantitative
discussion of the type given here for these cases,
but we see no reason why short-range bond ener-
gies should not dominate long-range excitonic en-
ergies in those cases as well.

APPENDIX B

It is remarked at the end of Sec. 3 and in Ref. 18
that the cohesive energy AG of diamond-type semi-
conductors can be explained semiquantitatively in
terms either of Penn’s model **'!" or in terms of
trends '® as a function of lattice constant a. In
Penn’s model an amount of energy %Eg is gained
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by a fraction E,/4Er of the valence electrons. Be-
cause E,/4Er is of order 0.1-0. 2, one can explain
in this way why cohesive energies are so much
smaller than optical energy gaps. On the other
hand, purely empirically AG scales like a™

Both these pictures predict a cohesive energy
for Si about 25% smaller than what is observed.
The reason for this is that the 3p-3d promotion en-
ergy in Si is very much smaller than the 2p-3d
promotion energy in diamond. As a result, p-d
hybridization enhances the cohesive energy sub-
stantially in Si. It also makes a significant contri-
bution to the binding energies *® of donor electrons
associated with group-V impurities in Si and Ge.

A striking feature of our formulas for the heat
of formation AH is the absence of a p-d term. We
believe that this comes about as follows. The high
angular momentum of d electrons means that they
have very high kinetic and potential energies. Thus
the oscillator strength associated with p-d tran-
sitions is spread over a wide energy range of or-
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der several rydbergs. Now the difference in co-
hesive energies between the AB covalent crystal
and the elemental A and B crystals (which are usu-
ally metals) arises mainly from the covalent energy
gap E,. This gap is of order a fraction of 1 Ry.

Its magnitude may be changed somewhat by p-d
hybridization, but this is already contained in the
theory, as is the effect of s-p dehybridization. The
large contribution to cohesive energies associated
with p-d hybridization comes from high-energy
transitions, and these are virtually the same in

the metals as in the semiconductors. Thus little
or no contribution to AH is expected from this
source,

Note added in proof. After this paper was sub-
mitted for publication, Riccius and Siemsen®® ¥
and Zallen and Slade® presented experimental
evidence which confirms the prediction of the di-
electric two-band model calculation in Appendix A
that cubic HgS is a semimetal.
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New Set of Tetrahedral Covalent Radii

J. A. Van Vechten* and J. C. Phillips
Bell Telephone Laboratories, Muvvay Hill, New Jersey 07974
(Received 5 March 1970)

A table of additive covalent radii for tetrahedrally coordinated crystals is obtained by simple
quantum-mechanical considerations using the bond lengths of the four diamond-type crystals and
only two free parameters. The 39 bond lengths so obtained agree with experiment with an rms
error of less than 1%. The extension of these considerations to other crystal structures and to
molecules is considered. These radii should be useful for estimating lattice distortions pro-

duced by isoelectronic impurities.

1. INTRODUCTION

As soon as x-ray data on crystal structures be-
gan to accumulate, ! various authors proposed that
interatomic distances d(AB) could be regarded as
approximately the sums of atomic radii 7, and 7,

d(AB)=7v,+7g. (1.1)

Relations such as (1. 1) are consistent with the
historical notion of atoms as indivisible particles
which were presumed to be hard spheres indepen-
dent of their environment. Theories of interatom-
ic spacing have since attracted considerable in-
terest and excellent reviews are available in the
books by Pauling?® and by Slater.

Slater points out that if one is willing to toler-
ate errors as large as 10-20%, then any inter-
atomic spacing can be calculated without employ-
ing any free parameters. One may take tabulated
Hartree- Fock-Slater solutions for the electronic
structure of the free neutral atoms? and assume that
the atomic radii are the radii of the charge-den-
sity maxima of the outermost electrons. The as-
sumption here® is that the covalent bond length is
determined by the maximal overlap of the unper-
turbed valence wave functions and that ionic and
other effects on interatomic distances may be ne-
glected.

However, the opposite approach of introducing
large numbers of free parameters in order to im -

prove the accuracy of the calculated values has
been the more popular. Typically, one introduc-
es as a free parameter the atomic radius of each
element and then varies these to give the best sta-
tistical fit to the class of materials under consid-
eration. More sophisticated theories? take ac-
count of variations in environment associated with
the covalent, ionic, or metallic nature of the
bonding of each atom to its nearest neighbors as
implied by coordination numbers and classical
valence concepts. Such refinements introduce
several free parameters for each element consid-
ered. While trends among these parameters are
usually discernible, it is not always clear whether
these arise because of necessity or convenience.
In this paper we attempt to clarify this situation
somewhat by first restricting ourselves to the
class of tetrahedrally coordinated crystals having
the chemical formula AYB%¥  (These crystals
have the diamond, zinc-blende, and wurtzite
structures.) Within this restricted class, we de-
velop explicit formulas for the interatomic spac-
ings which produce rms errors of less than 1%
Our formulas use a minimum number of free pa-
rameters and have a clear physical interpretation.
Many discussions of bond length have been car-
ried out for molecules, where multiple 7 bonds and
lone pairs produce large variations in bond lengths.
In cubic crystals, on the other hand, these molec-



